Department of Mechatronics Engineering, National Changhua University of Education, Changhua, 500, Taiwan, R.O.C.

Opto-Electro-Mechanical Components and System Reliability Analysis Lab

Professor: Kuan-Jung Chung

Ph. D, Mechanical Engineering (Major: Reliability Engineering), University of Maryland at College Park, MD 20742, Maryland, USA

Apr. 2013

A. Introduction

The Opto-Electro-Mechanical Components and System Reliability Analysis Lab was found in 2006 by the Dr. Kuan-Jung (Kenny) Chung. He and his research group focus on the package design and reliability analysis of materials, components, and system, with applications in energy, microelectronics, optoelelectronics, sensing and nanotechnology.

B. Research Field

- 1. **Advanced Packaging:** System-in-Packaging (SiP), and Packaging-on-Package (POP) design, mechanical stress/thermal/reliability analysis (simulation).
- 2. **Mechanical Property Characterization:** mechanical testing and stress simulation of thin/thick film, bulk materials for opto-electro-mechanical components and system.
- 3. **Piezoelectric Device Development:** piezoelectric sensor for vacuum measurement and flexible piezoelectric device (collaborated with Professor Wu's Team in NCHU), Surface Acoustic Wave (SAW)-based device for RFIDs and RF electricity generator.
- 4. **Degradation of the Li-ion Batteries:** degradation modeling and accelerated testing, optimal charging control, diagnostics of batteries, State of Health (SOH) assessment.
- 5. Other topics: design (simulation), packaging, and reliability testing for opto-electro-mechanical or biochemical-electrical components and system.

C. Test and Simulation Service

The Lab provides the multidiscipline tests to precisely evaluate the whole performance and reliability of components or system using the premium facilities and simulation tools in the lab and other collaborated research institutes at the university and industry respectively.

Equipment	Company	Specifications	Test Items	NO.	Remark
Name	/Model				
Environ-	Thermotron	Temp Range: -70~180 °C	Temp/Humid	1	
mental Test	SE-300-6-6	Humidity Range: 10~98% RH	Cycling,		
Chambers	(USA)	Temp Change Rate: 7~10 °C/min	Thermal Cycling,		
		Inner Chamber Dimension: 300L	High/Low Temp		
		(W61×H71×D67 cm)	Storage Tests,		Compatible
			Accelerated-level		with most
			Tests.		of the
	Espec	Temp Range: -40~150℃	Temp/Humid	1	Industry Test
	Pl-3KPH	Humidity Range: 20~98%RH	Cycling,		Standards
	(Japan)	Inner Chamber Dimension: 408L	Thermal Cycling,		(Electronics,

1. Reliability Testing Facilities

		(W60×H85×D80 cm)	High/Low Temp		LEDs,
			Storage Tests,		Opto-Electro
			Accelerated-level		-Mechanical
			Tests.		Modules,
		Temp Range: -40~150°C	Temp/Humid	1	etc.)
MHU-408ASA Humidity Ra		Humidity Range: 10~98%RH	Cycling,		
	(Taiwan) Inner Chamber Dimension: 408L Therr		Thermal Cycling,		
		(W60×H85×D80 cm)	High/Low Temp		
			Storage Tests,		
			Accelerated-level		
			Tests.		
	Giant Force	Temp Range: -60~100°C	Temp/Humid	1	
	GTH-408	GTH-408 Humidity Range: 10~98% RH			
	(Taiwan) Inner Chamber Dimension: 40		Thermal Cycling,		
		(W60×H85×D80 cm)	High/Low Temp		
			Storage Tests,		
			Accelerated-level		
	THIN IS		Tests.		
Battery	Jiehan	Multichannel: 3 channels		2	^a : with Data
Testing	BT <mark>S-3030-</mark> 3	Programming Charging/			Acquisition
System	(Taiwan)	Discharging Profiles			Module
		Output Load: +/- 30V, +/- 3A			
		Voltage/Currents On-time			
		Monitoring ^a			

2. Supporting Measurement Facilities

Instruments						
Equipment	Equipment Company		Test Functions	No.	Remark	
Name	/Model					
Function	HP	1mHz~50MHz	Generate Different	1		
Generator	8165A		Types of Electrical			
	(Germany)		Waveforms			
DC Power	Matsusada	200V/37A (7500W)	Supply Different	1	High Current Output	
Supply	PR-200-37-LHIs	Output Rate Control	DC Power		Model for Accelerated	
	(Japan)	(Adjustable)			Life/limitation Tests	
DC Power	Matsusada	3 kV/400 mA	Supply Different	1	High Voltage Output	
Supply	HAR-3N400-IH	(1200W)	DC Power		Model for Accelerated	
	(Japan)	Output Rate Control			Life/limitation Tests	
		(Adjustable)				

DC Power	Twintex	30V/5A	Supply Different	1	
Supply	TP-2305	Output Rate Control	DC Power		
	(Taiwan)	(Adjustable)			
Oscilloscope	Agilent	100MHz, 200MSa/s	Signal	1	
	S4622D		Measurement (e.g.,		
	(USA)		Voltage vs. Time)		
Digital	Agilent	6 1/2 Digit	Voltage, Current,	1	Continuity and Diode
Multimeter	34401A	Portable	and Resistance		Test Function
	(USA)		Measurement		
Datalogger	TES	RS-232Interface	Voltage, Current,	2	Communicate with PC
Multimeter	TES-2732	3 1/2 Digit	and Resistance		(e.g., Lab View) to
	(Taiwan)	Portable	Measurement		perform on-line/time
					Measurement/Monitor
DC Loads	Kikusui	5~500V/ 50A	1.Characteristic or	2	Applications: such as
Power Supplies	PLZ1003WH	(1000W)	Lifetime tests of		switching power
	(Japan)		Various DC		supplies, primary and
			voltage sources		secondary batteries
	TANTA CO	where the second	2. Burn in loads.		
Mobile	Yokogawa	Multi Channel	Measure/Monitor	2	On-line/Time
Temperature	MV100/ DX100	Portable	different Temps at		Measurement
Recorders		Data Acquisition	various Points		
Data	NI	16-Bit,	Multifunction to	1	Communicate with NI
Acquisition	USB 6259	Sampling Rate: 1.25	handle the different		Lab View to perform
Module	(USA)	MS/s,	Signals by physical		on-line/time
		USB interface	Measurements		Measurement/Monitor
	Jiehan	16-Bit,		2	
	DAS-5020	8 Channels			
	(Taiwan)	RS232 / RS485 or			
		USB interface			
		Software	2		
Reliability	Reliasoft	Different Statistic	Statistical Analysis	1	Professional Version
Analysis	Weibull++7	Distributions,	of Test Data		
	(USA)	Different Types of			
		Test Data Input			
	Reliasoft	Different ALT, ADT	ALT. ADT Data	1	Professional Version
	ALTA 7	Models	Analysis		
	(USA)	Different Types of			
		Test Data Input			
Multiphysics	Comsol			1	Version 3.4
Simulation	Whole Module				

	(Sweden)	Electrical,	Multiphysics			
		Mechanical, Fluid,	Analysis for			
	ANSYS	and Chemical	Products	1	Collaborate with Prof.	
	(USA)	Modules			Chia-Che Wu's , and	
					Jerry Min Chen's	
					Research Teams ¹	
Data	NI	Signal Control	Signal Monitoring,	1		
Acquisition	Lab View	Data Analysis	Data Storage and			
	(USA)		Analysis			
¹ Both of their research teams are in the dept of mechanical engineering, National Chung-Hsin						

University, Taichung, Taiwan.

Equipment	Company	Specifications	Test	No.	Remark
Name	/Model		Functions		
Sample	Topper	Various Cutting Speeds	Cutting	1	
Cutting	CL40		Samples		
Machine	(<mark>T</mark> aiwan)		12. F		
Sample	Topper	Various Rotating Speeds	Sample	1	
Grinding	P20F-1	with the Lubrication	Grinding and		
Machine	(Taiwan)	Module	Polishing		
Optical	Olympus	Max. 1000x Optical	Sample	1	1. Medium Magnification
Microscope	BX51M	Magnification (Connect	Observation		Observation
	(Japan)	to PC-based Image			2. TS-Link Advanced
		Measurement System)			Image Measurement
					System
Stereo	Nikon	Magnification: 8~35x	Sample	1	Low Magnification
Microscope 1	SMZ-1B	Working Distance: 100	Observation		Observation
	(Japan)	mm			
Stereo	Self-Assembly	CCD Zoom in/out	Sample	1	1. Low Magnification
Microscope 2	(Taiwan)	(Connect to PC-based	Observation		Observation
		Image Measurement			2. TS-Link Advanced
		System)			Image Measurement
					System

3. Failure Analysis Facilities

Note: the advanced failure analysis using the premium instruments such as SEM, FE-SEM, FIB/SEM, X-ray, etc., can be performed by the collaborated instrument centers located within many universities that sponsored by National Science Council, Taiwan. The cost of using these facilities in these collaborated centers is cheaper than the outsource labs outside campus.

Equipment	Company	Specifications	Test Functions	No.	Remark
Name	/Model				
Universal	Hung Ta	Max. Load: 5000 Kgf	Tension,	1	Extra Tools
Testing	HT-9102B	Max. Distance: 60 mm	Compression, and		Needed for
Machine	(Taiwan)	Max. Speed: 100mm/min	Bending Tests		Some Tests
Microforce	MTS	Max. Load : +/- 250 N	Tension, Compression,	1	Extra Tools
Testing	Tytron 250	Max. Distance : +/- 50 mm	Bending,		Needed for
Machine	(USA)		Fatigue, and		Some Tests
			Creep Tests.		

4. Mechanical Property Characterized Facilities

5. Others

Equipment	Company	Specifications	Test /Process	No.	Remark
Name	/Model		Functions		
UV	Self-	UV Source: Panasonic Aicure	UV Curing	1	Temperature Monitoring
Curing	Assembly	ANUP5024 (Power Density:			Available
Machine	(Taiwan)	4 W/cm ² @10 mm curing			
		distance; 2.3 W/cm ² @15 mm			
		curing distance)			
		3-axis Precision Positioning			
		and Moving (+/- 0.1 um) with			
		Temperature Plate Design			
		Working Area: 5 cm x 5 cm			
Dispensing	Self-	3-axis Precision Positioning	Dispensing	1	Advanced IC Packages, and
Machine	Assembly	and Moving (+/- 0.1 um)			LEDs.
	(Taiwan)	Working Area: 5 cm x 5 cm			

6. Pictures of Selected Facilities

D. People

1. Current members

a. Faculty: Dr. Kuan-Jung (Kenny) Chung,

Assist. Professor, Department of Mechatronics Engineering, NCUE. No.2 Shida Rd., Changhua, 500, Taiwan. Phone: **886-4-7232105 ext. 8121** Mobile: **886-935178321** Fax: **886-4-7211149** E-mail: **kjchung@cc.ncue.edu.tw**

Brief Bio: Kuan-Jung Chung received the B.S. and M.S. degrees in Mechanical Engineering from the Tamkang University and National Yunlin University of Science & Technology (Taiwan) in 1994 and 1997 respectively. He worked in Siliconware Corporation (SPIL group), Hsin-Chu Science-Based Industrial Park (Taiwan), as a senior IC packaging engineer from 1997 to 1999. His main responsibilities included to qualify IC packaging processes and failure analysis for new products. In 2005, he received the Ph.D degree in Mechanical Engineering from the University of Maryland at College Park (major: Reliability Engineering). His research work focused on laser processing IC interconnects, finite element modeling laser process, package design, as well as reliability assessment. Before he jointed the current job in university, he worked in Dell as an advisor to help the reliability assessment program of laptop products. Now he is an assistant professor at the Mechatronics Engineering Department in the National Changhua University of Education (Taiwan). His research interests are product reliability assessment, physics of failure analysis and modeling, laser processing materials, microelectronic packaging, and prognostics and health management. He also works extensively with several industries on projects regarding the reliability analysis of microelectronic products, automobile electronics, batteries, and machines.

b. Graduate Students: 1 Ph. D student, and 9 master students.

F. Publications (only list papers in English)

F-1. Journal Papers

- Chia-Che Wu, Chun-Hung Hsueh, Ya-Ting Chang, Chueh-Tang Chang, and <u>Kuan-Jung Chung</u>," A Patterning Technique of Lead Zirconate Titanate Thin Film by Ultraviolet-light," *Microsystem Technologies*, In press, 2013. (SCI, IF=0.931)
- Kuan-Jung Chung, C.F. Lin, and W.C. Chiang, "Mechanical behavior of copper thin films subjected to various strain rate loadings," *The Transactions of The Canadian Society for Mechanical Engineering*, accepted, to appear in vol.37, 2013. (SCI, IF=0.188)
- Kuan-Jung Chung, Martin Peckerar, Joseph B. Bernstein, "Design Optimization of Laser-Induced Microbridges for Low Resistance Interline Connections in ICs," Microelectronic Engineering, Vol. 103, pp. 70-75, 2013. (SCI, IF=1.557)
- Kuan-Jung Chung, C.F. Lin, and W.C. Chiang, "Effect of Strain Rates on the Mecha- nical Behavior of Cu Thin Films of Various Thicknesses," *Applied Mechanics and Materials*, Vol. 284, pp 94-97, 2013. (EI)
- 5. Taco Chen, Ming-Tzer Lin, and <u>Kuan-Jung Chung</u>," Linear Energy Control of Laser Drilling and Its Application in The Repair of TFT-LCD Bright Pixels," *Microsystem Technologies*, Vol.18, No. 11, pp 1909-1915, 2012. (SCI, IF=0.931)
- Kuan-Jung Chung, and J. B. Bernstein," Experimental Investigation of the Optimal Laser-Induced Microbridges, "*Precision Engineering*, Vol.34, No. 3, pp. 578-585, Jul. 2010. (SCI, IF=1.167)
- C.-J. Tong, Y.-C. Cheng, M.-T. Lin, <u>Kuan-Jung Chung</u>, J.-S. Hsu, and C.-L. Wu, " Optical Micro-peddle Beam Deflection Measurement for electrostatic mechanical testing of Nano-scale Thin Film Application to MEMS," *Microsystem Technologies*, Vol.16, No.7, pp.1131-1137, Jul. 2010. (SCI, IF=0.931)
- Kuan-Jung Chung, J. B. Bernstein, and L. Yang, "Experimental Study of EFO Ward Electrode Wear and Surface Pollution in Wire Bonding Process," *Tamkang Journal of Science and Engineering*, Vol. 6, No. 1, pp. 43-48, Mar. 2003. (EI)
- L. Yang, J. B. Bernstein, and <u>K. Chung</u>, "The Impact of Lead-Free Soldering on Electronic Packages," *Microelectronic International*, Vol. 18, No.3, pp. 20-26, 2001. (SCI, IF=0.471)
- Sy-Wei Lo and <u>K. Chung</u>, "The Optimum Condition of Manufacturing a Smooth Engineered Surface Using the Internal – Ironing Process," *STLE Tribology Trans*, Vol. 41, No. 4, pp. 563~571. Oct. 1998. (SCI, IF=0.578)

F-2. International Conference Papers

1. Yu-Chang Lin, Kuan-Jung Chung, Chueh-Chien Hsiao, and Hsuan-Fu Wang "A

Novel Double Dynamic Stress Accelerated Degradation Test to Evaluate Power Fade of Batteries for Electric Vehicles," *The 1st International Conference on Intelligent Technologies and Engineering Systems (ICITES 2012)*, Changhua, Taiwan, Dec. 13-15, 2012.

- <u>K. J. Chung</u>, C. F. Lin, W. C. Chiang, "Effect of Strain Rates on the Mechanical Behavior of Cu Thin Films of Various Thicknesses," *The 2nd International Conference on Engineering and Technology Innovation*, Kaohsiung, Taiwan, Nov. 2-6, 2012.
- Kuan-Jung Chung, Shiau-Shiun Lin, Chih-Cheng Chen, and Sen-Chou Tsai," Reliability Tests of a RFID-Based Lock for Power Meter Applications," Proceedings of IEEE 2012 International Symposium on Computer, Consumer, and Control, pp.945-948, 2012. (EI)
- 4. Chueh-Chien Shiao, and <u>Kuan-Jung Chung</u>, "Accelerated Degradation Assessment of 18650 Li-ion Batteries," *Proceedings of IEEE 2012 International Symposium on Computer, Consumer, and Control*, pp.930-933, 2012. (EI)
- 5. <u>Kuan-Jung Chung</u>, Chih-Hao Tseng, and LiYu Yang," The Solder Joint Reliability Assessment of a Wafer Level CSP Package, The 6th International Microsystems, Packaging, Assembly and Circuits Technology (IMPACT) Conference, and SIPO International 3D IC Conference, Oct. 2011. (EI)
- Kuan-Jung Chung, Liyu Yang, Bing-Yu Wang, and Chia-Che Wu," The Investigation of Modified Norris-Landzberg Acceleration Models for Reliability Assessment of Ball Grid Array Packages," The 5th International Microsystems, Packaging, Assembly and Circuits Technology (IMPACT) Conference, and SIPO International 3D IC Conference, Oct. 2010. (EI)
- Ming-Tzer Lin, Chi-Jia Tong, Ya-Chi Cheng, <u>Kuan-Jung Chung</u>, and Jiong-Shiun Hsu," Measure the Mechanical Behavior of Thin Films Using Four Step Phase-Shifting Methods on the Novel Paddle Cantilever Beam Source," *Proceedings of Society for Experimental Mechanics - SEM Annual Conference and Exposition on Experimental and Applied Mechanics 2009*, v 4, pp. 2387-2393, 2009. (EI)
- 8. Ming-Tzer Lin, Chi-Jia Tong, Ya-Chi Cheng, <u>Kuan-Jung Chung</u>, and Jiong-Shiun Hsu," Mechanical Properties Study of Nano-Scale Thin Films on the Novel Paddle Cantilever Using Optical Interferometer with Four Step Phase-Shifting Method," *Proceedings of DTIP of MEMS and MOEMS Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS*, pp. 140-144, 2009. (EI)
- 9. Yan-Ting Chen, <u>Kuan-Jung Chung</u>, and Ming-Tzer Lin, "Mechanical Property Measurement of Nano-Scale Argentum Films on the Novel Paddle Cantilever Beams Using Four Step Phase-Shifting Method," Proceedings of IEEE International Conference on Electronics Materials and Packaging (EMAP'08) - the

3rd International Microsystems, Packaging, Assembly and Circuits Technology (IMPACT) Conference and the 10th International Conference on Electronics Materials and Packaging (EMAP), pp.179-182, 2008. (EI)

- Kuan-Jung Chung, Kuo-Jung Tseng, Siao-Syun Lin, Nikita Liao, and Ken-Yuan Lin, "Development and Verification of Accelerated Life Test Circuits for Tire Pressure Monitoring System," Proceedings of IEEE 2008 Workshop on Accelerated Stress Testing and Reliability, 2008.
- C.-J. Tong, M-T. Lin, Y.-T. Chen, <u>Kuan-Jung Chung</u>, and J.-S. Hsu, "Novel Mechanical Properties Measurement of Thin Films Using Paddle Cantilever Deflection," *ThinFilms 2008 and NanoMan 2008*, 13-16 July, 2008, Singapore.
- Chi-Feng Lin, Po-Hua Yang, and <u>Kuan-Jung Chung</u>, "Design of Hybrid Solar Concentrator," *International Symposium on Solar Cell Technologies*, Dec. 5-6, 2008, Taipei, Taiwan.
- <u>Kuan-Jung Chung</u>, Joseph B. Bernstein, JI Luo, J. Ari Tuchman, and Zheng K. Ma, "Experimental Study for Low Resistance Interline Connections Using Pulsed Laser Techniques," *Proceedings of Quantum Electronics and Laser Science Conference* (*QELS*'05), v 3, pp. 1564-1566, 2005. (EI)
- Ji Luo, Joseph B. Bernstein, J. Ari Tuchman, Hu Huang, <u>Kuan-Jung Chung</u>, and Anthony L. Wilson, "A High Performance Radiation-Hard Field Programmable Analog Array," *Proceedings of the 5th International Symposium on Quality Electronic* Design, ISQUED 2004, pp. 522-527, 2004. (EI)
- 15. Anthony L. Wilson, J. Luo, J. B. Bernstein, J. A. Tuchman, Hu Huang, and <u>Kuan-Jung Chung</u>," A Continuous-Time Laser Programmable Analog Array for Radiation Environments," 7th Annual Mil/Aerospace Applications of Programmable Logic Devices International Conference (MAPLD), Sep. 8-10, 2004, Washington D. C., USA.
- 16. Ji Luo, <u>Kuan-Jung Chung</u>, Hu Huang, and J. B. Bernstein, "Temperature Dependence of R(on,sp) in Silicon Carbide and GaAs Schottky Diodes," *Annual Proceedings of IEEE International Reliability Physics Symposium*, pp. 425-426, 2002. (EI)
- Ji Luo, <u>Kuan-Jung Chung</u>, Hu Huang, and J. B. Bernstein, "Comparison Silicon Carbide Schottky Diodes," *Proceedings of 2001 IEEE GaAs Reliability Workshop*, pp.13-14, 2001. (EI)